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The Transfinite Element Method for
Modeling MMIC Devices

ZOLTAN J. CENDES, MEMBER, IEEE, AND JIN-FA LEE

Abstract —A new numerical procedure called the transfinite element
method is employed in conjunction with the planar waveguide model to
analyze MMIC devices. By using analytic basis functions together with
finite element approximation functions in a variational technique, the
transfinite element method is able to determine the fields and scattering
parameters for a wide variety of stripline and microstrip devices. With
minor modification, the transfinite element method can also be applied to
waveguide junctions. We show that the transfinite element method can be
used to treat singular points in waveguide junctions very efficiently.
Examples that have been calculated by this method are a rectangular
waveguide two-slot-20 dB coupler, stripline band-elimination filter, and
several microstrip discontinuity problems. Good agreement of the numeri-
cal results with published values demonstrates the validity of the proposed
procedure.

I. INTRODUCTION

O BE USEFUL at high frequencies, models of MMIC
devices must solve the wave equations first derived by
Maxwell. There are two ways to do this. One way is to
solve the full vector wave equations in three-dimensions;
the other is to employ the planar circuit model that ap-
proximates the fringe fields and hybrid modes of the
device but maintains its essential wave and dispersion
characteristics. This paper presents a new procedure to
solve the second of these alternatives and shows that
accurate results are obtained for several typical MMIC
devices.
In the planar waveguide model, the scalar Helmholtz
equation is solved in two-dimensions for the electromag-
netic field distribution. The procedure is as follows [1]-[3]:

1) Approximate the actual three-dimensional MMIC
device with an equivalent N-port planar wave-
guide model.

2) Solve for the electromagnetic fields and scattering
matrix coefficients in the equivalent planar wave-
guide model.

We propose here a new method for the second of these
steps that is considerably more efficient and more general
than the existing alternatives. The method is based on the
transfinite element procedure first proposed by the authors
for the solution of unbounded electrostatics problems {4]
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and later extended to the solution of electromagnetic scat-
tering problems [5]. Unlike the eigensolution procedure
reported in [2] that requires that a set of orthonormalized
eigenmodes be determined for the planar waveguide, the
transfinite element method is deterministic and hence is
much more efficient. And, unlike the finite difference
time-domain method of [3], the transfinite element method
reported here is time harmonic and thus eliminates the
need for expensive numerical time integration.

II. THE PLANAR WAVEGUIDE MODEL

Throughout this paper we will refer to “the equivalent
planar waveguide model.” In this model the actual three-
dimensional MMIC device is transformed into a planar
circuit that can be solved by two-dimensional analysis.
This is accomplished by replacing the actual dimensions
and material properties of the MMIC device with effective
dimensions and material properties for an equivalent pla-
nar waveguide. This operation is different with striplines
than it is with microstrip:

1) In stripline circuits, the dominant propagating mode
is TEM, for which effective dimensions are easily
calculated by using quasi-static analysis or by using
the empirical formula of [1].

2) In microstrip, the dominant mode is non-TEM and
the field pattern thus varies with frequency. In the
low-frequency limit, the TEM approximation can be
used to construct an equivalent planar waveguide
model. Formulas that model the frequency depen-
dence of the effective parameters may then be used
for higher frequencies.

In this paper, the frequency-dependent effective dielec-
tric constant in the microstrip circuits is given by [10]

€, —€,(0)

O

PRRREE

P= (—) [0.43f% —0.009f°] (1)
ZOm

where €, is the true relative dielectric constant, / is the

height of the substrate in millimeters, f is the frequency in

GHz, and the characteristic impedance Z;,, is in ohms.

The frequency-dependent effective width is modeled

0018-9480,/88 /1200-1639$01.00 ©1988 IEEE



1640

as [10]
| W,(0)- W
We(f)=W+%
g
[
fg=wg" (2)

where W is the true physical width of the microstrip. The
values of the ¢,(0) and W,(0) are calculated by using
quasi-static analysis [10]. The accuracy and frequency range
of (1), (2) are described fully in [10]. These formulas work
well provided that the width of the strip in the discontinu-
ity region is easily determined. However, in some problems
the width of the strip is ambiguous and reduces the cor-
rectness of this approximation.

III. THE TRANSFINITE ELEMENT METHOD
A. The Functional

Fig. 1 shows an equivalent planar waveguide model for a
typical MMIC device. Since the fringe field is taken into
account by using effective dimensions and material prop-
erties, we can write the equation for the component E, of
the electric field perpendicular to the plane of the conduc-
tor as

V2E,+ k%, E,=0 inQ
JE,
P 0 ondQ (3)

where Q is the effective problem domain, dQ is the
boundary on the sides, and dn is the normal derivative.
A functional corresponding to (3) is obtained by apply-
ing Galerkin’s method. The result is
F(E,)=- fE* V2E, + k%, E,) dQ (4)
where * represents the complex conjugate. We need to
separate the solution region into two parts: let Q, repre-
sent the discontinuity region of the planar circuit, and £,
the semi-infinite ports. Equation (4) then becomes

re z

V2E, + k%, E,) d

re"—z

F(E) == [ EX(v

P
- Z j;ZEZ* reTz
1=1"%

V2E, + k%, E,) dQ (5)

where P is the number of ports. Now apply Green’s
theorem to the first of these integrals. This gives

F(E,) = fg (VE*-VE, — k%, EXE.) d2
d

P JE
- Ex—24T
1§1¢E £ 9n

’E, + k%, E,) dQ.

re™z

>:i/ £X(v (©)

l
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Fig. 1. A two-port planar waveguide junction.

The reason for writing the functional in this form is that
the boundary integral in (6) provides the natural boundary
conditions for the solution space.

B. The Solution Space

Assume that port 1 is excited by the dominant TEM
mode. By modal analysis, the z component of the electric
field within port i can be written as

(l) = Szlq)mc + Z a
J=0

(7)

L l]
where §,; is the Kronecker delta

1
811 = {O
the a

,, are unknown coefficients, and fields ®
are given as

if i =1 (input port) 8)

otherwise

and @,

cI)mc =eXp (710)’)

jmx
®,, = cos ( A 9)

)exp(_Ytjy)'
In these equations, W, is the effective width of port 7, and
¢,, is the effective dielectric constant of port i, and the
propagation constant is

J7T
Y, = (W) —ke

i

(10)

The local coordinate in port i is defined such that the + p
direction is the direction of propagation of the scattered
wave. The origin of the coordinate is located on the port
boundary I,

The solutlon space is now taken to be the analytic basis
functions (9) for the port regions 2, and finite element
basis functions for the discontinuity region @ ,. By separat-
ing the finite element nodes in &, into two parts—interior
nodes ¢ and P sets of boundary nodes ¢'", we obtain the
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following hybrid solution space:

P
dlof + Y, @il in 9,
- =1 - '
dlo = M
8zl(I)mc + Z az] 1y in Ql

J=0

-
fll

$peC’

(11)

where the a are the Lagrangian interpolation polynomlals

denotes a row vector, _ denotes a column vector, M is
the number of modes in each port, and C° is the set of
continuous functions. Notice that we have used two differ-
ent kinds of basis functions in different regions, and also
that since the function ¢ must be continuous, these two
representations must be matched along the port reference
planes.

Since the analytic basis functions satisfy the Helmholtz
equation in the port regions, the integral over £, in (6) is
zero, independent of the coefficients a,,. Thus the func-
tional becomes

F(E,) = fQ (VE*-VE, - k%, EE,) dQ
d

4T, (12)

— 2: g;l;*

Continuity of the electric field is imposed by requiring
that the field approximations in €, and in €, be identical
at the finite element nodes along the port boundary I.
This condition may be expressed as
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Here m is the number of nodes on I, r represents the
transpose, and x, is the coordinate of node i.

Note that continuity of the derivative of the electric field
is automatically provided by the natural boundary condi-
tions of the functional (6).

C. Extremizing the Functional

By requiring that the trial functions E_ be in the solu-
tion space A, the boundary integral in (12) can be inte-
grated analytica]ly The result is

¢E *- =8, V10a10W1 — 4, [Y;]‘L (15)
where
0 j*k
A Wi j=k=0 (16)
W, /2 j=k#+0.

Finally, substituting (13)-(16) into (12), the functional
can then be expressed in matrix form as

F(E,) =[P+ @[ P @[ P]7|"

[Sr] [Sn}] [ SII‘Z] ?I
[Sw] [Srlrl] [Srlrzl P..+[P]a
[S]FZI] [Srzrl] [Srzrz] [P,]a,

~

—aipWive t+ Z §7 |a

where

[s,] = fg (Vive! - ke, da’)dQ.  (17)
d

This equation is shown for clarity with only two ports; if

there are more ports, then additional terms similar to that

of port 2 need to be added.

¢ =8, P +1 Pla, (13) Extremizing this with respect to ¢*/ and a} gives the
e - final matrix equation
[S/] [Sm] [P1] [Sm.][P,] ¢/ [Sm] Punc
T
[P1]T[Sr11] [P1]T[Sr1r1][P1]+[Yl] ]T[Srlrzl[Pz] a | = [P] [Sr]rl]flnc+Y10W18 (]8)
r
[Pz]T[Srzl] [Pz]T[Srlrll[Pl] P ]T[Srzrz][Pz]‘*“[Yz] 1573 [P,] [SFzFx]PmC
where ’ where
T
=11 1] =[1 0 0 0.
[P]= [f o Pa P zM] Notice that since the [S; ] submatrices are sparse and
, the number of modes M required in the formulation is
JTX, JTXy Jux, small, the matrix multiplications in (18) can be done very
L;, = |cos w cos\ cos W, efficiently. The finally matrix equation is sparse and sym-
' ' metric and can be solved by using the preconditioned
a,=la, ay a1’ (14) conjugate gradient method (PCCG) [12].
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D. The Scattering Matrix

The scattering matrix for two-port circuits is obtained in
two steps

1) Take port 1 to be the input port and solve (18).
Since the incident wave is assumed to have unit
amplitude, the scattering coefficients are defined as

S =ay
YaolV>

Y101 .

S =ay (19)

2) Change the input port to be port 2 and repeat the
procedure in step 1. The scattering coefficients
S51, S5, can then be found again by using (19).

For an N-port circuit, the analysis needs to be per-
formed N times to determine the N X N scattering matrix.
From the solution of (18), one obtains not only the scatter-
ing matrix of the device but also the excitations of the
higher modes on the port reference plane for each port.
Chu and Itoh [11] have defined a generalized scattering
matrix to characterize microstrip step discontinuities. With
the present method, a generalized scattering matrix can be
computed for general MMIC devices.

1V. NuUMERICAL RESULTS FOR MMIC COMPONENTS

A general purpose computer program has been devel-
oped to model MMIC devices using the transfinite element
method [8]. To show the validity and generality of the
method, we present numerical results for several MMIC
devices together with the detailed descriptions of the pla-
nar waveguide model that has been used in the analysis.

A. Stripline Band-Elimination Filter

Shown in Fig. 2(a) is a two-port stripline filter with a
circular disk. The characteristic impedance of both ports is
50 €, the substrate height is 24 = 0.64 ¢m and the relative
dielectric constant is 2.4, To solve this problem with the
transfinite element method, we first convert to the equiva-
lent planar waveguide model with the effective dimensions
shown in Fig. 2(b). This geometry is then discretized by
using triangular finite elements, and solved by means of
the transfinite element method. The transmission coeffi-
cient computed by means of this procedure is plotted in
Fig. 2(c). As shown, good agreement exists between these
results and published experimental data [7]. It should be
noted that the curve in Fig. 2(c) was produced by using the
adaptive spectral response modeling procedure in [9]. The
squares on the abscissa of this graph correspond to the
frequencies actually emploved in the computation.

We also like to point out that the zero in the transmis-
sion coefficient in Fig. 2(c) corresponds to the first reso-
nance of the circular disk. The field intensity at the reso-
nance frequency 2.976 GHz is plotted in Fig. 2(d) to
provide more physical insight. It is apparent from the
intensity plot that the transmission zero is caused by the
orthogonality of the modal distribution and of the TEM
field distribution at the output port at resonance.
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B. Microstrip Step Discontinuity

Fig. 3(a) shows a microstrip step discontinuity with a
substrate height 2=0.635 mm and substrate dielectric
constant €,=9.7. The corresponding planar waveguide
model at low frequency is shown in Fig. 3(b) together with
the frequency-dependent effective parameters. Since the
problem is symmetric, only half of the geometry is used to
solve for the scattering coefficients. A comparison of the
transmission coefficient computed by transfinite element
method and by [14] is given in Fig. 3(c). This figure also
gives results computed with the generalized scattering ma-
trix method [11]. The discontinuity of S;; in the figure is
due to the excitation of the second mode in the wider port.

C. Microstrip T-Junction

The microstrip T-junction shown in Fig. 4(a) has a
substrate height A =0.65 mm and a substrate dielectric
constant €,=10.1 The quasi-static analysis to find the
planar waveguide model at low frequency requires that we
solve the Laplace equation twice; this performed in the
following way:

* First, input the cross section of the microstrip line as
shown in Fig. 4(b). Then create a finite element mesh
as shown in Fig. 4(c) by using the process of the
Delaunay triangulation [13].

e Assume that the top conductor carries constant cur-
rent and solve for the magnetic vector potential
distribution. The magnetic vector potential contours
are shown in Fig. 4(d). From the stored energy of the
system we can obtain the inductance L = 0.3373u,,
where ., is the permeability of free space.

e Compute the capacitance by solving the potential
distribution. The capacitance computed is C =
20.322¢,, where ¢, is the permittivity of free space.
The equal potential contours are shown in Fig. 4(e).

® The effective parameters at low frequency are given
by

The characteristics thus computed are summarized as fol-
lows:

Z=48.54 Q
W.,(0) =1.927 mm
€,.(0) =6.855.
Also shown in Fig. 4(a) are the formulas which provide
the frequency-dependent effective parameters.
The reflection and transmission coefficients computed

from the transfinite element method are compared with
the results by Mehran [15]. Good agreement is obtained, as
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Fig. 2. (a) Geometry of a stripline disk band-elimination filter coupled to two 50 @ striplines. (b) Planar waveguide model
for the stripline disk in (a). (¢} Calculation of the transmission coefficient for the band-elimination filter by the transfinite
element method compared with experimental values. (d) Contours of equal field intensity for the band-elimination filter at

the first transmission zero (2.976 GHz).

can be seen from Fig. 4(f). To understand the transmission
zero at 33.7 GHz, we present a plot of the field intensity in
Fig. 4(g). A TEM wave comes in from port 1 and excites
the first resonance mode in the square region. Because of
the TEM excitation in port 1, the polarization is a cosine
distribution along ports 2 and 3, which are orthogonal to
the TEM mode for output.

D. Microstrip Radial Stubs

Fig. 5(a) presents the geometry of a shunt-connected
microstrip radial stub. This device has been analyzed by
Giannini [16]; we used the formulas from {16] to construct
the low-frequency planar waveguide model given in Fig.
5(b). Again, due to the symmetry only one-half of the
geometry is modeled. The effective dielectric constant of

the radial stub is obtained by using the filling factor for a

_circular disk capacitor as developed in [17]. Fig. 5(c) shows

the finite element mesh with 342 unknowns that is used to
obtain the results in Fig. 5(d).

The numerical results in Fig. 5(d) are computed using
the model in Fig. 5(b) through the entire frequency range.
This neglects the dispersion caused by the effective param-
eter changes in the microstrip structure. When compared
to the measurements in [16], larger discrepancies at high
frequencies are observed, although the results are still
acceptable. Fig. 5(e) shows the plots of the real part of the
field at 3, 7, 11, and 19 GHz. These plots again provide
physical insight of the transmission zeros and total trans-
mission in Fig. 5(d). The typical computation time to
obtain the response at one frequency for Fig. 5(d) is less
than 30 s on a Sun 3/110 workstation.
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Physical Dimensions

W, =05mm

h = 08635 mm

(@)

Parameter values
Z,=46 940 Zo=4 6550

3 3657
1 0+0 00327 [0 43720 009f3]

Erl(f)=9 7=

0768
1 0+0 0707 [0 437%-0 009/3]

€ /)=9.7—

1524

96 324

Wi(f)=05+

This paper

x 9 e Reference [14]

Reference [11]

0 4 8 12
FREQ (GHz)
©
Fig. 3. (&) Microstrip step discontinuity with a substrate height 2 = 0.15

cm. (b) The planar waveguide model for the step discontinuity and the
frequency-dependent effective parameters. (¢) Comparison of the scat-
tering coefficients computed by using the transfinite element method
for the device in (a) with data from [14] and [11].
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E. Waveguide Junction Problems

By changing the analytic basis functions in (9) from a
cosine to a sine distribution within the waveguide regions,
the transfinite element method is transformed into a
method to model two-dimensional rectangular waveguide
junctions. An example of a waveguide junction problem is
the rectangular waveguide two-slot coupler shown in Fig.
6(a). The coupling of the incident wave to ports 2 and 4
are through the apertures. The current density at the edges
of the slots are mathematically infinite and are called
singular points.

The usual approach to model singular points with finite
elements is to use more elements around the point as
shown in Fig. 6(b). The total number of unknowns for the
mesh shown in Fig, 6(b) is 492, and the scattering coeffi-
cients computed by the transfinite element method are
plotted in Fig. 6(c), together with measured data [6]. A
large discrepancy between the computed data and the
measurements exists, as can be scen from the figure. In
order to improve the accuracy of the numerical model at
singular points, we introduce the use of transfinite singular
elements.

F. Singular Elements

In Fig. 6(d) we show two conducting planes that inter-
sect at an angle 8. When B > , the field becomes singular
at this point. Notice in the figure that we can enclose the
singular point with a circular arc with radius r,. If the
radius r, is much smaller than the wavelength, the
Helmbholtz equation can be replaced by the Laplace equa-
tion within the circular region. Hereafter, we will refer to
the circular region as the singular region . From [18], the
electric field in the singular region can then be written as

a6
E(p,0)=e1p”/ﬁsin(—) (20)
B
where p is the distance from the singular point, 8 is the
angle, and e, is an unknown coefficient. We have found
that using even the single basis function in (20) in the
transfinite element method is enough to model the solution
in the singular region £_.

Along the lines of the previous sections, we divide the
problem domain for the waveguide junction with singulari-
ties into three parts: a discontinuity region {2, waveguide

regions {,, and singular regions .. Accordingly, the solu-
tion space in (11) becomes

P
&¢I+ Z &T,¢F, + &T\(PI‘S in Qd
=1
M
A= ¢l¢ = 811(1)1nc + Z (ZU(I)U in QI o e CO
J=0
a7
e,p”? sin(—B—) in Q,

(21)
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W, W = 0.608 mm
h = 0.65 mm
e, = 10.1
W, W,
Planar Waveguide Model :
Z=48.540)
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1.0+ —L
77.6295
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(continued).

Fig. 4. (a) A microstrip T-junction with equal field impedance in all ports and the corresponding planar waveguide model.
{b) Cross section of the microstrip line. (¢) The Delaunay triangulation of (b). (d) Equal magnetic vector potential contours
for inductance calculation. (¢) Equal potential contours with dieleciric constant ¢, =10.1 for capacitance calculation
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Fig. 4. (Conunued) (f) Numerical results for the reflection and the transmission coefficients for the T-junction compared
with Mehran [15]. (g) Contours of equal field intensity for the T-junction at 33.7 GHz.

Physical Dimensions
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Fig. 5 (a) Geometry of a shunt-connected microstrip radial stub. (b) The planar waveguide model of the radial stub at low
frequency for (a) (c) Finite element mesh for the microstrip radial stub. (d) Comparison of the computed |S;,| for the radial
stub with the experimental data in [16] (continued).
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©

Fig. 5. (Connnued) (e) Plots of the real part of the field at 3, 7, 11, and 19 GHz.

T a = 15 799 mm “

1 a 3 b = 4 447 mm
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kb > b=

(2) (b)

13-
®
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measured [6]
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-20
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© @

Fig. 6. (2) A waveguide two-slot —20 dB coupler. (b) Finite element mesh for the waveguide coupler with local mesh
refinement. (¢) Results computed by the transfinite element method without employing singular elements compared to
measurements [6]. (d) A typical singular point (continued).



1648

©

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 36, NO. 12, DECEMBER 1988

measured [6]

with singular element

FREQ (GHz)

(£

Fig. 6. (Continued) (¢) Finite clement mesh with singular elements. (f) Comparison of the results from the transfimte
element method that includes singular elements with measurements [6].

Notice that the finite element nodes have been separated
into: interior nodes ¢, boundary nodes ¢" on port refer-
ence plane i, and boundary nodes ¢" along the circular
arc ..

The functional becomes

F(E)= fﬂ (VE*-VE,— k’, EE,) dQ
d

P JE,
- El gSFE* SodT - QE*

The new boundary integral in the functional may be
integrated analytically to give

ai: dT
on

(22)

(23)

JoE, oo B
ﬁsz* on dI‘=e1*r0“”/BEel.

Finally, imposing continuity conditions and performing
the variational analysis as in the previous sections, we
obtain a singular element to model waveguide junction
discontinuities.

G. Scattering Coefficients Computed by Using the
Singular Element

Fig. 6(e) shows the finite element mesh for the problem
in Fig. 6(a) using singular elements at the slot edges. The
total number of unknowns is 362 since the singular ele-
ment requires fewer basis functions to model the singular-
ity. The computed scattering coefficients S,;, S, are plot-
ted in Fig. 6(f). Compared to experimental values [6],
much more accurate answers are obtained by using singu-
lar elements than is the case with conventional elements.

V. CONCLUSION

A new numerical procedure has been developed that
employs the planar waveguide model to analyze passive
MMIC devices. Various components have been studied

using the new method and the results compared with
previously published methods or experimental data; good
agreement is observed in many cases. The method has also
been applied to model arbitrary waveguide discontinuity
problems. In these cases, a singular element has been
developed to model the infinite fields that occur at re-
entrant corners.
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