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Abstract — A new numericaf procedure called the transfinite element

method is employed in conjunction with the planar wavegnide model to

analyze MMIC devices. By using analytic basis functions together with

finite element approximation functions in a variational technique, the

transfinite element method is able to determine the fields and scattering

parameters for a wide variety of stripline and microstrip devices. With

minor m@ification, the transfirrite element method can also be applied to

waveguide junctions. We show that the transfinite element method can be

used to treat singular points in waveguide junctions very efficiently.

Examples that have been calculated by tlds method are a rectangular

wavegnide two-slot-20 dB coupler, stripline band-elimination filter, and

several microstrip dkeontirtuity problems. Good agreement of the numeri-

eal results with published values demonstrates the vahdity of the proposed

procedure.

I. INTRODUCTION

T O BE USEFUL at high frequencies, models of MMIC

devices must, solve the wave equations first derived by

Maxwell. There are two ways to do this. One way is to

solve the full vector wave equations in three-dimensions;

the other is to employ the planar circuit model that ap-

proximates the fringe fields and hybrid modes of the

device but maintains its essential wave and dispersion

characteristics. This paper presents a new procedure to

solve the second of these alternatives and shows that

accurate results are obtained for several typical MMIC

devices.

In the planar waveguide model, the scalar Helmholtz

equation is solved in two-dimensions for the electromag-

netic field distribution. The procedure is as follows [1]–[3]:

1) Approximate the actual three-dimensional MMIC

device with an equivalent N-port planar wave-

guide model.

2) Solve for the electromagnetic fields and scattering

matrix coefficients in the equivalent planar wave-

guide model.

We propose here a new method for the second of these

steps that is considerably more efficient and more general

than the existing alternatives. The method is based on the

transfinite element procedure first proposed by the authors

for the solution of unbounded electrostatics problems [4]
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and later extended to the solution of electromagnetic scat-

tering problems [5]. Unlike the leigensolution procedure

reported in [2] tlhat requires that a~ set of orthonormalized

eigenmodes be determined for the planar waveguide, the

transfinite element method is deterministic and hence is

much more efficient. And, unlike the finite difference

time-domain method of [3], the transfinite element method

reported here is time harmonic and thus eliminates the

need for expensive numerical time integration.

II. THE PLANAR WAVEGUIDE MODEL

Throughout tlhis paper we will refer to “the equivalent

planar waveguide model.” In this model the actual three-

dimensional MMIC device is transformed into a planar

circuit that can be solved by two-dimensional analysis.

This is accomplished by replacing the actual dimensions

and material properties of the MMIC device with effective

dimensions and material properties for an equivalent pla-

nar waveguide. This operation is different with striplines

than it is with microstrip:

1)

2)

In stripline circuits, the dominant propagating mode

is TEM, for which effective dimensions are easily

calculated by using quasi-static analysis or by using

the empirical formula of [Il.

In microstrip, the dominant mode is non-TEM and

the field pattern thus varies with frequency. In the

low-frequency limit, the TEM approximation can be

used to construct an equivalent planar waveguide

model. Formulas that mod el the frequency depen-

dence of the effective parameters may then be used

for higher frequencies.

In this paper, the frequency-dependent effective dielec-

tric constant in the microstrip circuits is given by [10]

c, – C,e (0:)
‘r.(f) ‘fr–

l+P -

,>=(;]1”33[o.43f2 –o.oo9f3] - (1)
\ ~om }

where ~, is the true relative dielectric constant, h is the

height of the substrate in millimeters, j is the frequency in

GHz, and the characteristic impsdance Zon is in ohms.

The frequencydependent effective width is modeled
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as [10]
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we(o) – w
We(f)=w+

1 + f/fg

fg=_!-
2wg

(2)

where W is the true physical width of the microstrip. The

values of the c,.(O) and W,(O) are calculated by using

quasi-static analysis [10]. The accuracy and frequency range

of (l), (2) are described fully in [10]. These formulas work

well provided that the width of the strip in the discontinu-

ity region is easily determined. However, in some problems

the width of the strip is ambiguous and reduces the cor-

rectness of this approximation.

III. THE TRANSFINITE ELEMENT METHOD

A. The Functional

Fig. 1 shows an equivalent planar waveguide model for a

typical MMIC device. Since the fringe field is taken into

account by using effective dimensions and material prop-

erties, we can write the equation for the component E, of

the electric field perpendicular to the plane of the conduc-

tor as

v ‘Ez -t k2c,,Ez = O in L?

aEz
—=0
i?n

on dtl (3)

where Q is the effective problem domain, d Q is the

boundary on the sides, and dn is the normal derivative.

A functional corresponding to (3) is obtained by apply-

ing Galerkin’s method. The result is

F(E, ) = – JE=*(v2EZ + k2creEz) d!il (4)
Cl

where * represents the complex conjugate. We need to

separate the solution region into two parts: let !il~ repre-

sent the discontinuity region of the planar circuit, and Q,

the semi-infinite ports. Equation (4) then becomes

F(EZ) = – j EZ*(V2EZ + k2c,,Ez) dfil
.Qd

where P is the number of ports. Now apply Green’s

theorem to the first of these integrals. This gives

F(EZ) = ~ (VEZ*.VE, – k2c.=Ez*E.. ) dfl
od

I-2

Fig. 1. A two-port planar wavegwde Junction,

The reason for writing the functional in this form is that

the boundary integral in (6) provides the natural boundary

conditions for the solution space.

B. The Solution Space

Assume that port 1 is excited by the dominant TEM

mode. By modal analysis, the z component of the electric

field within port i can be written as

where 811 is the Kronecker delta

(81,= 1 if i = 1 (input port)

o
(8)

otherwise

the a,j are unknown coefficients, and fields @,nCand Q,,

are given as

O,nc = exp (yloy)

@,J = Cos(“z)‘~ exp( – y,,y), (9)

In these equations, ~ is the effective width of port i, and

c is the effective dielectric constant of port i, and the

propagation constant is

((1)
2

Y,j= ~ –k’e,, (lo)

The local coordinate in port i k defined such that the + ~

direction is the direction of propagation of the scattered

wave. The origin of the coordinate is located on the port

boundary r,.

The solution space is now taken to be the analytic basis

functions (9) for the port regions 0, and finite element

basis functions for the discontinuity region Qd. By separat-

ing the finite element nodes in Qd into two parts—interior

nodes # and P sets of boundary nodes @z, we obtain the
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following hybrid solution space:

where the a are the Lagrangian interpolation

denotes a row vector, - denotes a column

the number of modes in each port, and Co

(11)

polynomials,

vector, M is

is the set of

continuous functions. Notice that we have used two differ-

ent kinds of basis functions in different regions, and also

that since the function @ must be continuous, these two

representations must be matched along the port reference

planes.

Since the analytic basis functions satisfy the Helmholtz

equation in the port regions, the integral over Q, in (6) is

zero, independent of the coefficients a,,. Thus the func-

tional becomes

F(EZ) = j (vEZ* .vEZ – k2er,Ez*EZ) dfl
ad

Continuity of the electric field is imposed by requiring

that the field approximations in ~d and in ~, be identical

at the finite element nodes along the port boundary r,.

This condition may be expressed as

Here m is the number of nodes on I’,, ~ represents the

transpose, and x, is the coordinate of node i.

Note that continuity of the derivative of the electric field

is automatically provided by the natural boundary condi-

tions of the functional (6).

C. Extremizing the Functional

By requiring that the trial functions E: be in the solu-

tion space A, the boundary integral in (12) can be inte-

grated analytically. The result is

$

{9EZ
E,* -Z d17 = tillyloafiW1 – ti~ [y, ] g, (15)

r,

where

[

o j+k

[y,] ,, = ~tYto j=k=() (16)
yyLJ/2 j=k+O.

Finally, substituting (13)-(16) into (12), the functional

can then be expressed in matrix form as

~(E~) = [#~i.c+~1[~1]T~2[~2]T]*

“[/S:1 ‘! I:!llni:–afJV1ylo + f fi~ tYll Q1
,=1

where

[Ll=~( - -) ~ (’7)v6’.VaJ– k2Cre6’(XJdQ
d

This equation is shown for clarity with only two ports; if

there are more ports, then additional terms similar to that

of port 2 need to be added.

Extre,mizing this with respect to +*I and a? gives the

final matrix equation

[s,,] [Sm,][pll

![

[s~r2]Ip21 +J”

[pIITISr,I] [p,lT[~r,r,][pll+ tYll Ip~lT[sr,r,]ip2” 1
(18)

[P21~[Sr,[] [Pzl~[Sr,rl][Pll [P21~[Sr,r2][P21+ y,] f12 [

[S,rllf’,nc
.. [PI] r [Sr,rl] tin. + YIOW1!

[~212- [Sr,r,] ‘In.

where where

yinc=[l 1 ““” l]T ~=[1 o 0 ““” O]T.

[Pi] = [f’lo f’,, “ “ “ ~lM] Notice that since the [Si, ] sub matrices are sparse and

~i,=[cos(y) COS(*)~~~cos(+)~
the number of modes M ;equired in the formulation is

small, the matrix multiplications in (18) can be done very

efficiently. The finally matrix equation is sparse and sym-

T
metric and can be solved by using the preconditioned

gl=[azo all ““” alMl . (14) conjugate gradient method (PCCG) [12].
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D. The Scattering Matrix

The scattering matrix for two-port circuits is obtained in

two steps

1) Take port 1 to be the input port and solve (18).

Since the incident wave is assumed to have unit

amplitude, the scattering coefficients are defined as

rY20W2
S1z=a20 —

Ylowl “

(19)

2) Change the input port to be port 2 and repeat the

procedure in step 1. The scattering coefficients

S21, S22 can then be found again by using (19).

For an N-port circuit, the analysis needs to be per-

formed N times to determine the N x N scattering matrix.

From the solution of (18), one obtains not only the scatter-

ing matrix of the device but also the excitations of the

higher modes on the port reference plane for each port.

Chu and Itoh [11] have defined a generalized scattering

matrix to characterize microstrip step discontinuities. With

the present method, a generalized scattering matrix can be

computed for general MMIC devices.

IV. NUMERICAL RESULTS FOR MMIC COMPONENTS

A general purpose computer program has been devel-

oped to model MMIC devices using the transfinite element

method [8]. To show the validity and generality of the

method, we present numerical results for several MMIC

devices together with the detailed descriptions of the pla-

nar waveguide model that has been used in the analysis.

A. Stripline Band-Elimination Filter

Shown in Fig. 2(a) is a two-port stripline filter with a

circular disk. The characteristic impedance of both ports is

50 Q, the substrate height is 2h = 0.64 cm and the relative

dielectric constant is 2.4. To solve this problem with the

transfinite element method, we first convert to the equiva-

lent planar waveguide model with the effective dimensions

shown in Fig. 2(b). This geometry is then discretized by

using triangular finite elements, and solved by means of

the transfinite element method. The transmission coeffi-

cient computed by means of this procedure is plotted in

Fig. 2(c). As shown, good agreement exists between these

results and published experimental data [7]. It should be

noted that the curve in Fig. 2(c) was produced by using the

adaptive spectral response modeling procedure in [9]. The

squares on the abscissa of this graph correspond to the

frequencies actually employed in the computation.

We also like to point out that the zero in the transmis-

sion coefficient in Fig. 2(c) corresponds to the first reso-

nance of the circular disk. The field intensity at the reso-

nance frequency 2.976 GHz is plotted in Fig. 2(d) to

provide more physical insight. It is apparent from the

intensity plot that the transmission zero is caused by the

orthogonality of the modal distribution and of the TEM

field distribution at the output port at resonance.

B. Microstrip Step Discontinuity

Fig. 3(a) shows a microstrip step discontinuity with a

substrate height h = 0.635 mm and substrate dielectric

constant c. = 9.7. The corresponding planar waveguide

model at low frequency is shown in Fig. 3(b) together with

the frequency-dependent effective parameters. Since the

problem is symmetric, only half of the geometry is used to

solve for the scattering coefficients. A comparison of the

transmission coefficient computed by transfinite element

method and by [14] is given in Fig. 3(c). This figure also

gives results computed with the generalized scattering ma-

trix method [11]. The discontinuity of Sll in the figure is

due to the excitation of the second mode in the wider port.

C. Microstrip T-Junction

The rnicrostrip T-junction shown in Fig. 4(a) has a

substrate height h = 0.65 mm and a substrate dielectric

constant c,= 10.1 The quasi-static analysis to find the

planar waveguide model at low frequency requires that we

solve the Laplace equation twice; this performed in the

following way:

First, input the cross section of the microstrip line as

shown in Fig. 4(b). Then create a finite element mesh

as shown in Fig. 4(c) by using the process of the

Delaunay triangulation [13].

Assume that the top conductor carries constant cur-

rent and solve for the magnetic vector potential

distribution. The magnetic vector potential contours

are shown in Fig. 4(d). From the stored energy of the

system we can obtain the inductance L = 0.3373p o,

where p o is the permeability of free space.

Compute the capacitance by solving the potential

distribution. The capacitance computed is C =

20.322c0, where co is the permittivity of free space.

The equal potential contours are shown in Fig. 4(e).

The effective parameters at low frequency are given

by

The characteristics thus computed are summarized as fol-

lows:

Z=48.54Q

W;(0) = 1.927 mm

c,,(O) = 6.855.

Also shown in Fig. 4(a) are the formulas which provide

the frequency-dependent effective parameters.

The reflection and transmission coefficients computed

from the transfinite element method are compared with

the results by Mehran [15]. Good agreement is obtained, as
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Fig. 2. (a) Geometry of a stripline disk band-elimination filter coupled to two 50 Q striplines. (b) Planar waveguide model
for the stripline disk in (a). (c) Calculation of the transmission coefficient for the band-elirmnation filter bv the transfinite
element m~thod compared with experimental values. (d) Contours of equal field intensity for the band-elimination filter at

the first transmission zero (2.976 GHz).

can be seen from Fig. 4(f). To understand the transmission

zero at 33.7 GHz, we present a plot of the field intensity in

Fig. 4(g). A TEM wave comes in from port 1 and excites

the first resonance mode in the square region. Because of

the TEM excitation in port 1, the polarization is a cosine

distribution along ports 2 and 3, which are orthogonal to

the TEM mode for output.

D. Microstrip Radial Stubs

Fig. 5(a) presents the geometry of a shunt-connected

microstrip radial stub. This device has been analyzed by

Giannini [16]; we used the formulas from [16] to construct

the low-frequency planar waveguide model given in Fig.

5(b). Again, due to the symmetry only one-half of the

geometry is modeled. The effective dielectric constant of

the radial stub is obtained by using the filling factor for a

circular disk capacitor as developed in [17]. Fig. 5(c) shows

the finite element mesh with 342 unknowns that is used to

obtain the results in Fig. 5(d).

The numerical results in Fig. 5(d) are computed using

the model in Fig. 5(b) through the entire frequency range.

This neglects the dispersion causec~ by the effective param-

eter changes in the rnicrostrip structure. When compared

to the measurements in [16], larger discrepancies at high

frequencies are observed, although the results are still

acceptable. Fig. 5(e) shows, the plc~ts of the real part of the

field at 3, 7, 11, and 19 GHz. These plots again provide

physical insight of the transmission zeros and total trans-

mission in Fig. 5(d). The typical computation time to

obtain the response at one frequency for Fig. 5(d) is less

than 30 s on a Sun 3/110 workstiition.
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E. Waveguide Junction Problems

+ By changing the analytic basis functions in (9) from a

cosine to a sine distribution within the waveguide regions,

the transfinite element method is transformed into a

method to model two-dimensional rectangular waveguide
.— Vv,= 15 mm junctions. An example of a waveguide junction problem is

I %2

Parameter values

Z,= 46940 Z*=4 655fl

33857
q1(f)=9 7-

[1
1 0+0 003’27 0 43f2–o 009/3

O 768
6r*(/)=9.7–

1 0+0 0707@ 43f’–o oo9f3)

i!J; (/)=o 5+
I 524

10+A

w’;(j)= 15+
2185

1.0+ *

(b)

w;
.

the rectangular waveguide two-slot coupler shown in Fig.

6(a). The coupling of the incident wave to ports 2 and 4

are through the apertures. The current density at the edges

of the slots are mathematically infinite and are called

singular points.

The usual approach to model singular points with finite

elements is to use more elements around the point as

shown in Fig. 6(b). The total number of unknowns for the

mesh shown in Fig. 6(b) is 492, and the scattering coeffi-

cients computed by the transfinite element method are

plotted in Fig. 6(c), together with measured data [6]. A

large discrepancy between the computed data and the

measurements exists, as can be seen from the figure. In

order to improve the accuracy of the numerical model at

singular points, we introduce the use of transfinite singular

elements.

F. Singular Elements

In Fig. 6(d) we show two conducting planes that inter-

sect at an angle /3. When /3 > n, the field becomes singular

at this point. Notice in the figure that we can enclose the

singular point with a circular arc with radius ro. If the

radius rO is much smaller than the wavelength, the

Helmholtz equation can be replaced by the Laplace equa-

tion within the circular region. Hereafter, we will refer to

the circular region as the singular region 0,. From [18], the

electric field in the singular region can then be written as

(20)

where p is the distance from the singular point, 19 is the

angle, and el is an unknown coefficient. We have found

that using even the single basis function in (20) in the

transfinite element method is enough to model the solution

in the singular region 0,.

“Swr’-’’%’”-”-l- ‘hspaper
Along the lines of the previous sections, we divide the

problem domain for the waveguide junction with singulari-

ties into three parts: a discontinuity region fi,,, wave.guide

02 I

FREQ (GHz)

(c)

Fig. 3. (a) Microstrip step discontinuity with a substrate height h = 0.15
cm. (b) The planar waveguide model for the step discontinuity and the
frequency-dependent effective parameters. (c) Comparison of the scat-
tering coefficients computed by using the transfinite element method
for the device in (a) with data from [14] and [11].

regions $11,and singular regions Q,: Ac~ordingly, the ~olu-

tion space in (11) becomes

(21)
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6, = 10.1
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Planar Waveguide Model :
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1.319

I“O+*

3245%(f)=lo.l-

( )
1.0+0,00307 o.43f2–o.oo9f3

(a)

I

(b)

(d)

(c)

(e)

Fig. 4. (a) A microstrip T-junction with equal field impedance in all ports and the corresponding planar wavegnide model.
(b) Cross section of the microstrip line. (c) The Delaunay triangulation of (b). (d) Equal magnetic vector potential contours
for inductance calculation. (e) Equal potentiaJ contours with dielectric constant c, =10.1 for cap acitance calculation

(continued).
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Fig. 4. (Cmrtmued ) (f) Numerical results for the reflection and the transmission coefficients for the T-Junction compared
with Mehran [15]. (g) Contours of equal field intensity for the T-junction at 33.7 GHz.

Physical Dimensions

n1’
ro=7..5mm

~=600

C,=1OO
h = 0.635 mm

-._&!!z!,
W= .6mm

\
\ tl ,~w

6,, =6.697 \ /’ 6,, = 6’.697 v + = 1.0026rnrn

(a)

\ S,, I (dB)

(c)

(b)

This Paper

o Measurements

.50~
0246810 12 14 18 18 20 22 24 26

FREQ (GHz)

(d)

Fig. 5 (a) Geometry of ashunt-connected microstrip radlalstub. (b) Theplan~waveguide model of theradlalstub at low
frequency for(a) (c) Finite element mesh forthemlcrostnp radial stub. (d) Comparison of the computed lS211for the radial

stub with the experimental data in [16] (continued).
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Fig. 5. (Continued) (e) Plots of the real part of the field at 3, 7, 11, and 19 GHz.

I

la 3 b=4447mm

2a 4

o

. measured [6]

without smgul.r element

19411
x

x

-20 –

lSl(dB)

x

-40 –

x

P

I 1 I

(y

rO

-60
12 13 14 15 16 17 18 19

FREQ (GHz)

(c)
(d)

Fig. 6. (a) A waveguide two-slot – 20 dB coupler. (b) Finite element mesh for the waveguide coupler with local mesh
refinement. (c) Results computed by the transfinite element method without employing singular elemrnts compared to

measurements [6]. (d) A typical singular point ( contwzued).
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x measured [6]

w,th singular element

5411

x
-20 —

I S I (dB)

-40 -

-60 I
1!2 14 16 18

FREQ (GHz)

(e) (f)

Fig. 6. (Continued) (e) Finite element mesh with singular elements. (f) Comparmon of the results from the transfnute
element method that includes singular elements with measurements [6].

Notice that the finite element nodes have been separated

into: interior nodes Or, boundary nodes OrI on port refer-

ence plane i, and boundary nodes Or’ along the circular

arc r,.

The functional becomes

F(E, ) = / (vE=*”vE, – k2c,eE,*E=) dfl
Qd

The new boundary integral in the functional may be

integrated analytically to give

(23)

Finally, imposing continuity conditions and performing

the variational analysis as in the previous sections, we

obtain a singular element to model waveguide junction

discontinuities.

G. Scattering Coefficients Computed by Using the

Singular Element

Fig. 6(e) shows the finite element mesh for the problem

in Fig. 6(a) using singular elements at the slot edges. The

total number of unknowns is 362 since the singular ele-

ment requires fewer basis functions to model the singular-

ity. The computed scattering coefficients S21, S41 are plot-

ted in Fig. 6(f). Compared to experimental values [6],

much more accurate answers are obtained by using singu-

lar elements than is the case with conventional elements.

V. CONCLUSION

A new numerical procedure has been developed that

employs the planar waveguide model to analyze passive

NIMIC devices. Various components have been studied

using the new method and the results compared with

previously published methods or experimental data; good

agreement is observed in many cases. The method has also

been applied to model arbitrary waveguide discontinuity

problems. In these cases, a singular element has been

developed to model the infinite fields that occur at re-

entrant corners.
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